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1. General Introduction 

Solid vs. Liquid Triggering in Energetic/Explosive Substances 

Triggering (initiating) is one of the key processes in combustion, explosion, and detonation of 
energetic/explosive materials.  By controlling the triggering mechanisms, these strong processes 
can be made more probable or suppressed if necessary.  In order to get such control, one has to 
clearly understand the physical nature of the triggering mechanisms in different substances.  
Depending on the substance, the triggering mechanisms can be quite different. 

The processes of triggering hot spots by adiabatic loading of liquid energetic/explosive materials 
have been explored quite well (e.g., the classical monographs in references 1–4).  It was 
established—both theoretically and experimentally—that the key role in these processes is 
played by various gaseous bubbles (figure 1).  Because the bubbles are elastically much softer 
than the surrounding energetic/explosive liquids, they reach much higher temperatures than the 
liquids under the same impact pressure.  Thus, they are the hot spots for initiating corresponding 
exothermal chemical reactions. 

In several respects, the impact-induced adiabatic triggering in energetic/explosive solids differs 
from the corresponding liquid materials.  Three essentially new circumstances appear when 
dealing with triggering hot spots in solid energetic/explosive substances: 

1. At equilibrium, liquid substance is able to sustain hydrostatic loading only, whereas all 
spectrum of nonhydrostatic loading becomes possible in solids.   

2. Also at equilibrium, the gaseous bubbles in liquids are always spherical due to the surface 
tension.  In solids, the dissolved gases or vapors accumulate within the pre-existed defects 
of various shapes:  voids, cracks, intergrain spaces, etc.   

 

Figure 1.  Bubbles with gas within liquid (a) and solid (b) energetic/explosive substances. 

 

(b)(a) 
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3. The energetic/explosive liquids completely transmit the externally applied pressure to the 
gaseous bubbles dissolved within them.  When dealing with gaseous bubbles in 
energetic/explosive solids, the solid matrix withstands itself to the externally applied 
transmitted loads. 

In our studies, we sequentially analyze each of these factors and their implications.  In particular, 
we dwell on a detailed exploration of the effect of adiabatic loading of the solid media with a 
spherical hole possessing another substance within itself.  This study gives theoretical and 
engineering insight into the mechanisms of generating hot spots in solid energetic/explosive 
materials. 

2. The Exact Nonlinear Systems of Adiabatic Loading and Its Linearized 
Version 

2.1 Geometrical Settings 

The geometry of the system to be analyzed is shown in figure 2.  The entire space is referred to 
as the Cartesian coordinate ix , with the basis covariant basis ix

 *
 and contravariant basis ix


.   

 

Figure 2.  The geometry of the system.

                                                 
*Although the systematic use of “tensorial” grammar and language are not particularly important when using the Cartesian 

coordinates, the formulas look much more elegant and well structured when this grammar is respected.  This grammar allows the 
Cartesian coordinate system to be replaced with others.  The reader can ignore all the tensorial adjectives without losing essential 
physics.  Note that in the Cartesian coordinates systems, the covariant and contravariant components of all tensors are 
numerically equal.   

1x

2x  

3x

r(x1 , x2 , x3) 
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The Lagrangian (material) coordinates of the body’s particles in the unstressed reference 
configuration coincide with the corresponding coordinates of the space.  We use the notation of 

( )i i
ir x x x

 
 for the radius vector, with the pole at the origin of the coordinate system.  Let 

i i
i in n x n x 

  
 be the components of the unit normal to the hole’s boundary in the reference 

configuration.  For the spherical hole centered at the origin, the components of the unit are given 
by the formula i i in x x  (no summation!).  Let ( ) ( ) ( )i i

i iu x u x x u x x 
  

 be the displacements of 
the material point with the Lagrangian coordinates ix .   

The analysis in this report deals with thermoelastic stresses within an infinite isotropic matrix 
possessing a hole and exposed to the specified displacement gradients ij  at infinity.  In other 
words, the displacements at infinity are given by the following formula:   

 at | |j m
i iju x x    . (1) 

2.2 Some Necessary Elements of Thermodynamics 

In our notation of thermomechanical notions, we follow the monographs in references 5–8.  
Local thermodynamic state of any elastic solid can be fixed by the pairs ,( , )i ju   or ,( , )i ju  , 

where ,i ju  is the displacement gradient,   is the specific* entropy density, and   is the absolute 

temperature.  This statement means that all other thermodynamic functions are uniquely 
determined by any one of these pairs.  It is particularly true regarding the internal energy density 
e  and the free energy density  .  If the energy density e  is given as a function of ,( , )i ju  or if 

the energy density   is known as function of ,( , )i ju  , i.e.,  

 

 , ,( , ) , ( , )i j i je e u u     , (2)
 

then any other thermodynamic function can be calculated only by differentiation and solving 
some algebraic equations. 

The Piola-Kirchhoff stress tensor jip  can be treated as a function of ,( , )i ju   – ,( , )ji
k lp u   or 

,( , )k lu   – ,( , )ji
k lp u  .  Of course, it is silently assumed that the two functions are completely 

different.  Sometimes, in order to avoid possible confusion, we use the notation jip  for the first 
function and jip  for the second function.   

The first and second laws of thermodynamics imply the following identities: 

 , ,
, ,

,

( , ) ( , )
( , ) , ( , )k l k lij

k l k l
i j

e u e u
p u u

u

 
  


 

  
 

 , (3) 

and

                                                 
* In the following, the adjective “specific” means “per unit volume in the reference configuration.” 
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 , ,
, ,

,

( , ) ( , )
( , ) , ( , )k l k lij

k l k l
i j

u u
p u u

u

   
  


 

 
 

 . (4) 

The displacement gradients and the absolute temperature are usually the most convenient 
quantities for direct experimental measurements.  That is why the function ,( , )k lu   plays such 
an important role in experimental and theoretical thermodynamics.  Its first derivatives can then 
be interpreted with the help of the thermodynamic identities in equation 4.  It is much harder to 
measure the Piola-Kirchhoff stress tensor and the entropy density.   

The second derivatives of the free energy define the so-called instantaneous isothermal elastic 
modules ijklc , the instantaneous tensor of thermal expansions ij , and the instantaneous heat 
capacity uc  at fixed displacements: 

 

2 2
, , ,

, , ,

2
, ,

2

( , ) ( , ) ( , )
, ,

( , ) ( , )
.

ji
m n m n m nijkl ij

i j k l i j

m n m n
u

u u p u
c

u u

u u
c



    


 

   
 



  
  

   

 
  


 (5)

 

“Instantaneous” means that these quantities change when the thermodynamic state changes itself.  
The traditional constant tensor of the linear elasticity is just the values of these tensors in 
reference (usually stress-free or hydrostatic) state.   

The internal energy density function ,( , )k le u   plays a particularly important role when dealing 

with adiabatic processes in which the entropy density remains unchanged in each material 
particle.  Its first derivatives are given by the thermodynamic identities in equation 3.   

The instantaneous adiabatic elastic modules ijklc  are defined by the second derivatives of the 

specific internal energy density:  2
, , ,( , ) /ijkl

m n i j k lc e u u u     . 

The first and second laws of thermodynamics imply certain thermodynamic identities binding the 
second derivatives of the two main thermodynamic potentials.  In particular, these identities 
imply the following useful thermodynamic relationships: 

 ijkl ijkl ij kl

u

c c
c 
    , (6) 

and 

 
2 2

, ,

2
,

( , ) ( , )
,k l k l ij

u i j u

e u e u

c u c

   
 

 
   

  
. (7)
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2.3 The Exact Nonlinear System of Equilibrium Equations for Isentropic Loading 

We assume that the original stress-free state of the body has a uniformly distributed entropy 

0  .  We will also assume that in the loading processes, the entropy distribution remains 
unchanged.  The following equilibrium conditions should then be satisfied within the bulk of the 
body and at its stress-free boundary, respectively: 

 , 0

,

( , )
0m n

j
i j

e u

x u




 
, (8) 

and 

 , 0

,

( , )
0m n

j
i j S

e u
n

u





. (9) 

After solving equations 8 and 9, i.e., after determining the vector field of displacements ( )iu x ,the 
equilibrium distributions of the stress tensor jip  and the absolute temperature can be calculated 
with the help of the thermodynamic identities in equation 3: 

   , 0
,

,

( , )k lij
ad k l

i j

e u
p u

u





 , (10) 

and 

 , 0
,

( , )
( ) k l

ad k l

e u
u







 


. (11) 

3. The Equilibrium System in Linear Approximation 

Assume that the loading experiment can be adequately described in the framework of quadratic 
approximation of thermodynamic potentials near the stress-free configuration.  In particular, this 
means that the free energy density can be approximated by the following relationship:   

 

22 2
, 0 20 0

, , , , 2
, , ,

2
, , ,

0

( , )(0, ) (0, )1 1
( , )

2 2

1 1
,

2 2

m n
m n i j k l i j

i j k l i j

ijkl ij u
i j k l i j

u
u u u u T T

u u

C
C u u B u T T

     
 



 
  

    

  
 (12) 
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where tensors 0(0, )ijkl ijklC c   , 0(0, )kl klB   , and  00,u uC c   play the roles of  the 

second-order instantaneous tensors in the ground configuration; 0T     is the notation of 

deviation of the absolute temperature. 

Equation 12 leads to the following linear expansion of the stress tensor ijp : 

 , ,( , )ji ijkl ij
m n k lp u T C u B T  , (13) 

the bulk equilibrium equations, 

 , , 0ijkl ij
k jl jC u B T   , (14) 

and boundary conditions at any traction-free interface S , 

  , 0ijkl ij
k l jS

C u B T n   . (15) 

When dealing with adiabatic loading, it is more convenient to work with the following bulk and 
boundary equations of equilibrium: 

 , 0ijkl
k jlC u  , (16) 

and 

 , 0ijkl
k l jS

C u n  . (17) 

The corresponding stress tensor and temperature change are given by the following formulas: 

 ,
ij ijkl

ad k lp C u , (18) 

and 

 0
,

,

(0, )
ad k l

k l

e
T u

u





 


. (19) 

With the help of the identities in equation 7, equation 19 can be rewritten as 

 0
,

kl
ad k l

u

T B u
c


 . (20) 

Using relationships equations 6 and 20, equation 18 can be rewritten as follows: 

   0
, , , ,

ij ijkl ijkl ij kl ijkl ij
ad k l k l k l k l ad

u

p u C u C B B u C u TB
C  
 

     
 

, (21) 

as it follows from equation 13.
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Isotropic Elastic Substance 

In the case of isotropic elastic substance, the tensors ijklC and ijB , by definition, have the 

following particularly simple structures: 

  , ,ijkl ij kl ik jl il jk ij ijC B K                 (22) 

where   and   are the Lame isothermal elastic modules, 2 /3K      is the isothermal 

module of volumetric compression, and   is the coefficient of thermal expansion.  The 
definitions in equation 22 imply 

 ., (., .)2ij ij k kl i j ij
kp u u K T         . (23) 

Some formulas of thermodynamics of isotropic solids become more convenient when using the 
isothermal and isentropic Poisson ratios   and  : 

 
   

,
2 2


 

   

 
   

 
 

. (24) 

Formulas in equation 24 imply the following useful identities: 

      
2 12 12 2

, ,  ,  
1 2 1 2 3 1 2 3 1 2

K K  
     

   

      
   


   

   
, 

   

2 12 2 1 2
,

3 3 1 2 3 3 1 2
K K   

     
 

     
 


     

 
. (25) 

Using equation 22, we can rewrite equations 20 and 21 as follows: 

 .0
.
k

ad k
u

T K u
C 
   , (26) 

and 

 ., (., .)2ij ij k kl i j ij
ad k adp u u K T          . (27) 

With the help of equation 22, equations 6 and 7 can be rewritten as follows: 

 

 

 

 

2 2 2 20 0

2 20 ,

ijkl ijkl ij kl ij kl ik jl il jk ij kl

u u

ij kl ik jl il jk

u

C C K K
C C

K
C

     

  

              

        

     

 
    
 

 (28)
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and 

 
2 2

0 0 0 0
2

,

(0, ) (0, )
, ij

u i j u

e e
K

C u C 
    

 
 

  
  

. (29) 

Introducing the isentropic Lame modules   and   according to the formulas 

 2 20 and
u

K
C

   


       ,  (30) 

we can rewrite equation 28 as follows: 

  ijkl ij kl ik jl il jkC            . (31) 

According to equation 27, the stresses in the adiabatic loading take the familiar form as follows: 

 ., (., .)2ij ij k kl i j
ad kp u u      . (32) 

Equation 30 implies 

 
2

2 20 0, u

u u

K C K
K K K

C K C






 


   
   . (33) 

Also, we would like to indicate the thermodynamic identities which include the specific heat 
capacity pC  at fixed pressure: 

 

2 2 20
0 , , p

p u
u u

K C
C C K K K K

C K C



  


       . (34) 

 

4. Temperature Distribution in Isotropic Elastic Space  

4.1 Adiabatic Nonhydrostatic Loading of Unbounded Isotropic Space 

This case is based on the analysis of equation 27, which can be rewritten in the following form:   

 ( )
, ., .2ij k i j ij ij
k ad adu u p K T         . (35) 

 

Equation 35 implies the following: 

 . .
, . .

1 1

3 3
k k k

ad k ad k ad ad ku p T p
K K 

   . (36)
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Combining equations 26 and 36, we get the following: 

 
. .

. .0 0
2

0 3 3

k k
ad k ad k

ad
u p

p p
T

C K C

   
 

   


. (37) 

Using equations 34 and 37, we have more convenient formulas: 

 
. .

. .0 0
1 21

3 1 2 1 3

k k
ad k ad k

ad
u u

p pK
T

C K C
 

  

    
 


   

 
. (38) 

4.2 Formal Statement of the Boundary Value Problem 

Summarizing the previously mentioned relationships, we arrive at the boundary value problem 
(BVP) in linear approximation. 

The bulk equations of equilibrium: 

   , 0ij kl ik jl il jk
k jlu             . (39) 

The condition at the hole’s boundary: 

 

   , 0ij kl ik jl il jk
k l j

S
u n             . (40) 

The conditions at infinity: 

 | |j m
i iju x at x  . (41) 

After solving the BVP in equations 39–41, the impact-induced temperature change T can be 
found with the help of equation 26. 

4.3 Formal Solution of the BVP in Equations 39–41 

We will be looking for a solution of the system in equations 39–41 in the following solution: 

 

 

.
, . , .. 3

5 3 7 5

1 1 1
4(1 ) 4(1 )

3 1 15 3
,

j p p q j p
i ij ip pq i ij ip

pq p q q p p q
pq i i i i

u x D D r C x D x
r r r

D x x x C x x x C
r r r r

    

  

             
   

             
    

 (42)

 

where C  and pqD  are the coordinate-independent scalar and symmetric tensor, respectively, and 

i j
ijr x x and  / 2        are the adiabatic Poisson ratios. 

A somewhat routine but cumbersome calculation leads to the following formulas: 
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3

5 3 7 5

1
4(1 )

3 1 15 3
 

j p
i ij ip

pq p q q p p q r
pq i i i ir

u x D x
r

D x x x C x x x C
r r r r

 

   

  

             
    

, (43)
 

and  

    

 

, 5 3

5 3 5 7

7 5 7 9

3 1
4(1 )

3 1 1 5
3

5 1 1 7
3 15

p r p
i j ij ip jr j

pq p q q p r pq m p q q p
ij i j i j jr im i i

pq
p q r p q r p q p q r q
j ir j ir ij ir jq

u D x x
r r

C x x x x C
r r r r

D

x x x x x x C x x x x C
r r r r

   

          

      

     
 

                  
           
   


 


 
  

. (44)

 

The formula of the stresses is even more cumbersome: 

. . .3 5

21 1 1
2(1 2 ) 12

1 2
       

k k k l m
ij ij k k ij km lp D D x x

r r






    

 
 

 ( ) 5 3 3 5

3 1 1 3
 2 4(1 ) 4(1 )

            
k m k k k m

ij ik jm j jk i jk imD x x D D x x
r r r r              

 

   

 

( ) ( )
5 3 7 5

( )
9 7 7 5

3 1 5 1
2 2 3 2

7 1 5 1
 2 15 3 2 .

                 
                

pq p q m pq k p q
pq ij i j jm ik i

p q m k p q m p q
pq ik jm j im ij

D C x x x C
r r r r

D x x x x C x x x x C
r r r r

       

      (45)

 

Straightforward calculations, based on equation 43, show that the asymptotic condition in 
equation 41 at infinity is satisfied automatically.  More cumbersome calculations show that the 
bulk equilibrium in equation 39 will be satisfied automatically as well.  Lastly, straightforward 
calculations with equation 45 show that the boundary condition in equation 40 will be satisfied if 
the constant C  assumes the value of 

 21

5
C R  (46) 

and the symmetric tensor satisfies the following linear algebraic system of equations: 

 
3

( )2 5 7 5
2 ,

5 5 2
pq p q

ij i j pq ij

R
D p  

   


  
  

 
 (47) 
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where ijp  is the value of the stress tensor at infinity 

 
. ( )2 .

1 2
k

ij k ij ijp 




   




 
    

 (48)
 

Equation 48 implies the following useful relationship: 

 
. . . .

1 1 21
2 , .

1 2 2 1
k k k k

k k k kp p 

 

 
  

  
  

 
 

 (49)
 

Equation 47 has the following solution: 

     
3 3

.

2 5 5
.

4 4 5 7 5 4 7 5
k

pq k pq pq

R R
D p p

  




   
 

  
  

 (50) 

4.4 Temperature Distribution Around a Spherical Hole 

Combining the formula of the displacement gradient in equation 44 with equations 46 and 49,  
we get 

 
., . 3 2

1 3
2(1 2 ) .k k qp p q

k k qpu D x x
r r       
 

 (51)
 

Combining equations 49 and 51, we arrive at the following formula of the local volume change: 

 
., . 3 2

1 21 2 3
(1 2 )

2 1
k k pq p q

k k pqu p D x x
r r







 

 
        

. (52)
 

Using equation 50, we can rewrite the formula of the divergence as follows:  

 
 

3

., . 3 2

1 2 5(1 2 )1 1 3

2 1 2 7 5
k k ij i j

k k ij

R
u p x x p

r r
 

 

 


   
          

. (53) 

Finally, substituting equation 53 in equation 26 and using equation 25, we arrive at the following 
formula of the temperature change: 

 
3

0
3 2

1 2 11 3
5

3 1 2 1 7 5
ij ij i j

ad ij
u

R
T x x p

C r r
 

  

    
  


               

. (54) 

With the help of identities in equations 25 and 34, equation 54 can also be rewritten as follows: 

 

 



 12

 

3
0

3 2

3
0

3 2

1 3
5

3 7 5

1 3
5  .

3 7 5

ij ij i j
ad ij

u

ij ij i j
ij

p

K R
T x x p

C K r r

R
x x p

C r r



 






 




 







            
            

 (55)

 

This is the main result of this report, which is discussed in the next section. 

5. Discussion and Conclusion 

Equations 54 and 55 are quite instructive and transparent.  The first terms give the spatially 
uniform adiabatic temperature increase uniformT that would exist in the absence of the hole in the 

infinite elastic media:   

 0 0
. .3 3

i i
uniform i i

p u

K
T p p

C C K




       . (56) 

The second term gives a spatially nonuniform additional temperature increase localT due to the 

presence of the hole: 

  
3

0
3 2

15 3

3 7 5
i ij i j

ad local ij
p

R
T x x x p

C r r




 


       
 . (57) 

The temperature field localT  is localized in a small vicinity of the hole and decays as the inverse 

cube of r distance from the center of the hole.  However, at the hole’s boundary at r R , both 
temperature fields uniformT  and localT  are the same order of magnitude.   

Remarkably, the local temperature field localT  identically vanishes when the solid undergoes the 

pressure-like external loading at infinity, i.e., when ij ext ijp p    .  On the other hand, the 

uniform temperature field uniformT  vanishes at shear-like loadings, i.e., when . 0i
ip  .  In this 

case, the local field localT  not only dominates but becomes the only existing temperature field 

induced by the adiabatic impact.  In this case, it can be rewritten in the simpler form: 

     3
0

3

5 1

7 5
i i j

ad local ij
p

R
T x r r p

C r













 , (58) 
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where ( ) /i k ir x x r  are the Cartesian components of a unit vector having the same direction as 
the radius-vector ( )kr x


 drawn from the center of the hole to the point ix . 

Equations 57 and 58 become even more transparent in terms of the three principal stresses, Lp  
of the tensor ijp , corresponding to the three principal directions with the unit vectors L

il  .  In 
terms of the principal quantities, the tensor ijp  can be presented in the following form: 

 

3

1

L L L
ij i j

L

p p l l



  . (59)
 

Introducing the directional cosines cos i L
L ir l  , we can rewrite equation 57 as follows: 

 

  3 3
20

3
1

5 1
( ) sin

7 5local L L
Lp

R
T x p

C r




 
 




  . (60)
 

In particular, for the uniaxial stressing along the axis 1x , equations 56–60 give the following 
formula of the spatial distribution of the impact-induced temperature field: 

 

3
1 20

13

1
5 1 sin

7 5ad
p

R
T p

C r




 


  
     

. (61)
 

On the boundary of the hole, equation 61 gives the following formula: 

 
  1 20

1

5 1
cos

7 5ad S
p

T p
C





 



 


. (62) 

All these remarkable qualitative facts should be taken into account when discussing generation 
of hot spots in solids under the action of adiabatic impacts.  The explicit solution can also be 
used for verification of numerical codes and planning experiments.  At this stage, it is important 
to merge theoretical modeling with computer-based modeling and physical experiment.   
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